1
0
mirror of https://github.com/ansible/awx.git synced 2026-02-05 09:45:21 +01:00

Keep callback receiver working

* remove any code that is not used by the call back receiver
This commit is contained in:
thedoubl3j
2026-01-07 14:49:42 -05:00
parent f9f4bf2d1a
commit ebd51cd074
8 changed files with 8 additions and 572 deletions

View File

@@ -33,45 +33,7 @@ class Control(object):
workers.append(r.get(key).decode('utf-8'))
return '\n'.join(workers)
def running(self, *args, **kwargs):
return self.control_with_reply('running', *args, **kwargs)
def cancel(self, task_ids, with_reply=True):
if with_reply:
return self.control_with_reply('cancel', extra_data={'task_ids': task_ids})
else:
self.control({'control': 'cancel', 'task_ids': task_ids, 'reply_to': None}, extra_data={'task_ids': task_ids})
def schedule(self, *args, **kwargs):
return self.control_with_reply('schedule', *args, **kwargs)
@classmethod
def generate_reply_queue_name(cls):
return f"reply_to_{str(uuid.uuid4()).replace('-','_')}"
def control_with_reply(self, command, timeout=5, extra_data=None):
logger.warning('checking {} {} for {}'.format(self.service, command, self.queuename))
reply_queue = Control.generate_reply_queue_name()
self.result = None
if not connection.get_autocommit():
raise RuntimeError('Control-with-reply messages can only be done in autocommit mode')
with pg_bus_conn(select_timeout=timeout) as conn:
conn.listen(reply_queue)
send_data = {'control': command, 'reply_to': reply_queue}
if extra_data:
send_data.update(extra_data)
conn.notify(self.queuename, json.dumps(send_data))
for reply in conn.events(yield_timeouts=True):
if reply is None:
logger.error(f'{self.service} did not reply within {timeout}s')
raise RuntimeError(f"{self.service} did not reply within {timeout}s")
break
return json.loads(reply.payload)
def control(self, msg, **kwargs):
with pg_bus_conn() as conn:
conn.notify(self.queuename, json.dumps(msg))

View File

@@ -1,13 +1,10 @@
import logging
import os
import random
import signal
import sys
import time
import traceback
from datetime import datetime, timezone
from uuid import uuid4
import json
import collections
from multiprocessing import Process
@@ -17,19 +14,9 @@ from queue import Full as QueueFull, Empty as QueueEmpty
from django.conf import settings
from django.db import connection as django_connection, connections
from django.core.cache import cache as django_cache
from django.utils.timezone import now as tz_now
from django_guid import set_guid
from jinja2 import Template
import psutil
from ansible_base.lib.logging.runtime import log_excess_runtime
from awx.main.models import UnifiedJob
from awx.main.dispatch import reaper
from awx.main.utils.common import get_mem_effective_capacity, get_corrected_memory, get_corrected_cpu, get_cpu_effective_capacity
# ansible-runner
from ansible_runner.utils.capacity import get_mem_in_bytes, get_cpu_count
if 'run_callback_receiver' in sys.argv:
logger = logging.getLogger('awx.main.commands.run_callback_receiver')
@@ -37,8 +24,6 @@ else:
logger = logging.getLogger('awx.main.dispatch')
RETIRED_SENTINEL_TASK = "[retired]"
class NoOpResultQueue(object):
def put(self, item):
@@ -94,7 +79,7 @@ class PoolWorker(object):
if self.retiring:
uuid = body.get('uuid', 'N/A') if isinstance(body, dict) else 'N/A'
logger.info(f"Worker pid:{self.pid} is retiring. Refusing new task {uuid}.")
raise QueueFull("Worker is retiring and not accepting new tasks") # AutoscalePool.write handles QueueFull
raise QueueFull("Worker is retiring and not accepting new tasks")
uuid = '?'
if isinstance(body, dict):
if not body.get('uuid'):
@@ -164,8 +149,6 @@ class PoolWorker(object):
# the purpose of self.managed_tasks is to just track internal
# state of which events are *currently* being processed.
logger.warning('Event UUID {} appears to be have been duplicated.'.format(uuid))
if self.retiring:
self.managed_tasks[RETIRED_SENTINEL_TASK] = {'task': RETIRED_SENTINEL_TASK}
@property
def current_task(self):
@@ -213,10 +196,6 @@ class PoolWorker(object):
return not self.busy
class StatefulPoolWorker(PoolWorker):
track_managed_tasks = True
class WorkerPool(object):
"""
Creates a pool of forked PoolWorkers.
@@ -328,256 +307,3 @@ class WorkerPool(object):
except Exception:
logger.exception('could not kill {}'.format(worker.pid))
def get_auto_max_workers():
"""Method we normally rely on to get max_workers
Uses almost same logic as Instance.local_health_check
The important thing is to be MORE than Instance.capacity
so that the task-manager does not over-schedule this node
Ideally we would just use the capacity from the database plus reserve workers,
but this poses some bootstrap problems where OCP task containers
register themselves after startup
"""
# Get memory from ansible-runner
total_memory_gb = get_mem_in_bytes()
# This may replace memory calculation with a user override
corrected_memory = get_corrected_memory(total_memory_gb)
# Get same number as max forks based on memory, this function takes memory as bytes
mem_capacity = get_mem_effective_capacity(corrected_memory, is_control_node=True)
# Follow same process for CPU capacity constraint
cpu_count = get_cpu_count()
corrected_cpu = get_corrected_cpu(cpu_count)
cpu_capacity = get_cpu_effective_capacity(corrected_cpu, is_control_node=True)
# Here is what is different from health checks,
auto_max = max(mem_capacity, cpu_capacity)
# add magic number of extra workers to ensure
# we have a few extra workers to run the heartbeat
auto_max += 7
return auto_max
class AutoscalePool(WorkerPool):
"""
An extended pool implementation that automatically scales workers up and
down based on demand
"""
pool_cls = StatefulPoolWorker
def __init__(self, *args, **kwargs):
self.max_workers = kwargs.pop('max_workers', None)
self.max_worker_lifetime_seconds = kwargs.pop(
'max_worker_lifetime_seconds', getattr(settings, 'WORKER_MAX_LIFETIME_SECONDS', 14400)
) # Default to 4 hours
super(AutoscalePool, self).__init__(*args, **kwargs)
if self.max_workers is None:
self.max_workers = get_auto_max_workers()
# max workers can't be less than min_workers
self.max_workers = max(self.min_workers, self.max_workers)
# the task manager enforces settings.TASK_MANAGER_TIMEOUT on its own
# but if the task takes longer than the time defined here, we will force it to stop here
self.task_manager_timeout = settings.TASK_MANAGER_TIMEOUT + settings.TASK_MANAGER_TIMEOUT_GRACE_PERIOD
# initialize some things for subsystem metrics periodic gathering
# the AutoscalePool class does not save these to redis directly, but reports via produce_subsystem_metrics
self.scale_up_ct = 0
self.worker_count_max = 0
# last time we wrote current tasks, to avoid too much log spam
self.last_task_list_log = time.monotonic()
def produce_subsystem_metrics(self, metrics_object):
metrics_object.set('dispatcher_pool_scale_up_events', self.scale_up_ct)
metrics_object.set('dispatcher_pool_active_task_count', sum(len(w.managed_tasks) for w in self.workers))
metrics_object.set('dispatcher_pool_max_worker_count', self.worker_count_max)
self.worker_count_max = len(self.workers)
@property
def should_grow(self):
if len(self.workers) < self.min_workers:
# If we don't have at least min_workers, add more
return True
# If every worker is busy doing something, add more
return all([w.busy for w in self.workers])
@property
def full(self):
return len(self.workers) == self.max_workers
@property
def debug_meta(self):
return 'min={} max={}'.format(self.min_workers, self.max_workers)
@log_excess_runtime(logger, debug_cutoff=0.05, cutoff=0.2)
def cleanup(self):
"""
Perform some internal account and cleanup. This is run on
every cluster node heartbeat:
1. Discover worker processes that exited, and recover messages they
were handling.
2. Clean up unnecessary, idle workers.
IMPORTANT: this function is one of the few places in the dispatcher
(aside from setting lookups) where we talk to the database. As such,
if there's an outage, this method _can_ throw various
django.db.utils.Error exceptions. Act accordingly.
"""
orphaned = []
for w in self.workers[::]:
is_retirement_age = self.max_worker_lifetime_seconds is not None and w.age > self.max_worker_lifetime_seconds
if not w.alive:
# the worker process has exited
# 1. take the task it was running and enqueue the error
# callbacks
# 2. take any pending tasks delivered to its queue and
# send them to another worker
logger.error('worker pid:{} is gone (exit={})'.format(w.pid, w.exitcode))
if w.current_task:
if w.current_task == {'task': RETIRED_SENTINEL_TASK}:
logger.debug('scaling down worker pid:{} due to worker age: {}'.format(w.pid, w.age))
self.workers.remove(w)
continue
if w.current_task != 'QUIT':
try:
for j in UnifiedJob.objects.filter(celery_task_id=w.current_task['uuid']):
reaper.reap_job(j, 'failed')
except Exception:
logger.exception('failed to reap job UUID {}'.format(w.current_task['uuid']))
else:
logger.warning(f'Worker was told to quit but has not, pid={w.pid}')
orphaned.extend(w.orphaned_tasks)
self.workers.remove(w)
elif w.idle and len(self.workers) > self.min_workers:
# the process has an empty queue (it's idle) and we have
# more processes in the pool than we need (> min)
# send this process a message so it will exit gracefully
# at the next opportunity
logger.debug('scaling down worker pid:{}'.format(w.pid))
w.quit()
self.workers.remove(w)
elif w.idle and is_retirement_age:
logger.debug('scaling down worker pid:{} due to worker age: {}'.format(w.pid, w.age))
w.quit()
self.workers.remove(w)
elif is_retirement_age and not w.retiring and not w.idle:
logger.info(
f"Worker pid:{w.pid} (age: {w.age:.0f}s) exceeded max lifetime ({self.max_worker_lifetime_seconds:.0f}s). "
"Signaling for graceful retirement."
)
# Send QUIT signal; worker will finish current task then exit.
w.quit()
# mark as retiring to reject any future tasks that might be assigned in meantime
w.retiring = True
if w.alive:
# if we discover a task manager invocation that's been running
# too long, reap it (because otherwise it'll just hold the postgres
# advisory lock forever); the goal of this code is to discover
# deadlocks or other serious issues in the task manager that cause
# the task manager to never do more work
current_task = w.current_task
if current_task and isinstance(current_task, dict):
endings = ('tasks.task_manager', 'tasks.dependency_manager', 'tasks.workflow_manager')
current_task_name = current_task.get('task', '')
if current_task_name.endswith(endings):
if 'started' not in current_task:
w.managed_tasks[current_task['uuid']]['started'] = time.time()
age = time.time() - current_task['started']
w.managed_tasks[current_task['uuid']]['age'] = age
if age > self.task_manager_timeout:
logger.error(f'{current_task_name} has held the advisory lock for {age}, sending SIGUSR1 to {w.pid}')
os.kill(w.pid, signal.SIGUSR1)
for m in orphaned:
# if all the workers are dead, spawn at least one
if not len(self.workers):
self.up()
idx = random.choice(range(len(self.workers)))
self.write(idx, m)
def add_bind_kwargs(self, body):
bind_kwargs = body.pop('bind_kwargs', [])
body.setdefault('kwargs', {})
if 'dispatch_time' in bind_kwargs:
body['kwargs']['dispatch_time'] = tz_now().isoformat()
if 'worker_tasks' in bind_kwargs:
worker_tasks = {}
for worker in self.workers:
worker.calculate_managed_tasks()
worker_tasks[worker.pid] = list(worker.managed_tasks.keys())
body['kwargs']['worker_tasks'] = worker_tasks
def up(self):
if self.full:
# if we can't spawn more workers, just toss this message into a
# random worker's backlog
idx = random.choice(range(len(self.workers)))
return idx, self.workers[idx]
else:
self.scale_up_ct += 1
ret = super(AutoscalePool, self).up()
new_worker_ct = len(self.workers)
if new_worker_ct > self.worker_count_max:
self.worker_count_max = new_worker_ct
return ret
@staticmethod
def fast_task_serialization(current_task):
try:
return str(current_task.get('task')) + ' - ' + str(sorted(current_task.get('args', []))) + ' - ' + str(sorted(current_task.get('kwargs', {})))
except Exception:
# just make sure this does not make things worse
return str(current_task)
def write(self, preferred_queue, body):
if 'guid' in body:
set_guid(body['guid'])
try:
if isinstance(body, dict) and body.get('bind_kwargs'):
self.add_bind_kwargs(body)
if self.should_grow:
self.up()
# we don't care about "preferred queue" round robin distribution, just
# find the first non-busy worker and claim it
workers = self.workers[:]
random.shuffle(workers)
for w in workers:
if not w.busy:
w.put(body)
break
else:
task_name = 'unknown'
if isinstance(body, dict):
task_name = body.get('task')
logger.warning(f'Workers maxed, queuing {task_name}, load: {sum(len(w.managed_tasks) for w in self.workers)} / {len(self.workers)}')
# Once every 10 seconds write out task list for debugging
if time.monotonic() - self.last_task_list_log >= 10.0:
task_counts = {}
for worker in self.workers:
task_slug = self.fast_task_serialization(worker.current_task)
task_counts.setdefault(task_slug, 0)
task_counts[task_slug] += 1
logger.info(f'Running tasks by count:\n{json.dumps(task_counts, indent=2)}')
self.last_task_list_log = time.monotonic()
return super(AutoscalePool, self).write(preferred_queue, body)
except Exception:
for conn in connections.all():
# If the database connection has a hiccup, re-establish a new
# connection
conn.close_if_unusable_or_obsolete()
logger.exception('failed to write inbound message')

View File

@@ -1,3 +1,3 @@
from .base import AWXConsumerRedis, AWXConsumerPG, BaseWorker # noqa
from .base import AWXConsumerRedis, BaseWorker # noqa
from .callback import CallbackBrokerWorker # noqa
from .task import TaskWorker # noqa

View File

@@ -6,25 +6,17 @@ import logging
import signal
import sys
import redis
import json
import psycopg
import time
from uuid import UUID
from queue import Empty as QueueEmpty
from datetime import timedelta
from django import db
from django.conf import settings
import redis.exceptions
from ansible_base.lib.logging.runtime import log_excess_runtime
from awx.main.utils.redis import get_redis_client
from awx.main.dispatch.pool import WorkerPool
from awx.main.dispatch.periodic import Scheduler
from awx.main.dispatch import pg_bus_conn
from awx.main.utils.db import set_connection_name
import awx.main.analytics.subsystem_metrics as s_metrics
if 'run_callback_receiver' in sys.argv:
logger = logging.getLogger('awx.main.commands.run_callback_receiver')
@@ -62,85 +54,6 @@ class AWXConsumerBase(object):
self.pool.init_workers(self.worker.work_loop)
self.redis = get_redis_client()
@property
def listening_on(self):
return f'listening on {self.queues}'
def control(self, body):
logger.warning(f'Received control signal:\n{body}')
control = body.get('control')
if control in ('status', 'schedule', 'running', 'cancel'):
reply_queue = body['reply_to']
if control == 'status':
msg = '\n'.join([self.listening_on, self.pool.debug()])
if control == 'schedule':
msg = self.scheduler.debug()
elif control == 'running':
msg = []
for worker in self.pool.workers:
worker.calculate_managed_tasks()
msg.extend(worker.managed_tasks.keys())
elif control == 'cancel':
msg = []
task_ids = set(body['task_ids'])
for worker in self.pool.workers:
task = worker.current_task
if task and task['uuid'] in task_ids:
logger.warn(f'Sending SIGTERM to task id={task["uuid"]}, task={task.get("task")}, args={task.get("args")}')
os.kill(worker.pid, signal.SIGTERM)
msg.append(task['uuid'])
if task_ids and not msg:
logger.info(f'Could not locate running tasks to cancel with ids={task_ids}')
if reply_queue is not None:
with pg_bus_conn() as conn:
conn.notify(reply_queue, json.dumps(msg))
elif control == 'reload':
for worker in self.pool.workers:
worker.quit()
else:
logger.error('unrecognized control message: {}'.format(control))
def dispatch_task(self, body):
"""This will place the given body into a worker queue to run method decorated as a task"""
if isinstance(body, dict):
body['time_ack'] = time.time()
if len(self.pool):
if "uuid" in body and body['uuid']:
try:
queue = UUID(body['uuid']).int % len(self.pool)
except Exception:
queue = self.total_messages % len(self.pool)
else:
queue = self.total_messages % len(self.pool)
else:
queue = 0
self.pool.write(queue, body)
self.total_messages += 1
def process_task(self, body):
"""Routes the task details in body as either a control task or a task-task"""
if 'control' in body:
try:
return self.control(body)
except Exception:
logger.exception(f"Exception handling control message: {body}")
return
self.dispatch_task(body)
@log_excess_runtime(logger, debug_cutoff=0.05, cutoff=0.2)
def record_statistics(self):
if time.time() - self.last_stats > 1: # buffer stat recording to once per second
save_data = self.pool.debug()
try:
self.redis.set(f'awx_{self.name}_statistics', save_data)
except redis.exceptions.ConnectionError as exc:
logger.warning(f'Redis connection error saving {self.name} status data:\n{exc}\nmissed data:\n{save_data}')
except Exception:
logger.exception(f"Unknown redis error saving {self.name} status data:\nmissed data:\n{save_data}")
self.last_stats = time.time()
def run(self, *args, **kwargs):
signal.signal(signal.SIGINT, self.stop)
signal.signal(signal.SIGTERM, self.stop)
@@ -165,140 +78,6 @@ class AWXConsumerRedis(AWXConsumerBase):
time.sleep(60)
class AWXConsumerPG(AWXConsumerBase):
def __init__(self, *args, schedule=None, **kwargs):
super().__init__(*args, **kwargs)
self.pg_max_wait = getattr(settings, 'DISPATCHER_DB_DOWNTOWN_TOLLERANCE', settings.DISPATCHER_DB_DOWNTIME_TOLERANCE)
# if no successful loops have ran since startup, then we should fail right away
self.pg_is_down = True # set so that we fail if we get database errors on startup
init_time = time.time()
self.pg_down_time = init_time - self.pg_max_wait # allow no grace period
self.last_cleanup = init_time
self.subsystem_metrics = s_metrics.DispatcherMetrics(auto_pipe_execute=False)
self.last_metrics_gather = init_time
self.listen_cumulative_time = 0.0
if schedule:
schedule = schedule.copy()
else:
schedule = {}
# add control tasks to be ran at regular schedules
# NOTE: if we run out of database connections, it is important to still run cleanup
# so that we scale down workers and free up connections
schedule['pool_cleanup'] = {'control': self.pool.cleanup, 'schedule': timedelta(seconds=60)}
# record subsystem metrics for the dispatcher
schedule['metrics_gather'] = {'control': self.record_metrics, 'schedule': timedelta(seconds=20)}
self.scheduler = Scheduler(schedule)
@log_excess_runtime(logger, debug_cutoff=0.05, cutoff=0.2)
def record_metrics(self):
current_time = time.time()
self.pool.produce_subsystem_metrics(self.subsystem_metrics)
self.subsystem_metrics.set('dispatcher_availability', self.listen_cumulative_time / (current_time - self.last_metrics_gather))
try:
self.subsystem_metrics.pipe_execute()
except redis.exceptions.ConnectionError as exc:
logger.warning(f'Redis connection error saving dispatcher metrics, error:\n{exc}')
self.listen_cumulative_time = 0.0
self.last_metrics_gather = current_time
def run_periodic_tasks(self):
"""
Run general periodic logic, and return maximum time in seconds before
the next requested run
This may be called more often than that when events are consumed
so this should be very efficient in that
"""
try:
self.record_statistics() # maintains time buffer in method
except Exception as exc:
logger.warning(f'Failed to save dispatcher statistics {exc}')
# Everything benchmarks to the same original time, so that skews due to
# runtime of the actions, themselves, do not mess up scheduling expectations
reftime = time.time()
for job in self.scheduler.get_and_mark_pending(reftime=reftime):
if 'control' in job.data:
try:
job.data['control']()
except Exception:
logger.exception(f'Error running control task {job.data}')
elif 'task' in job.data:
body = self.worker.resolve_callable(job.data['task']).get_async_body()
# bypasses pg_notify for scheduled tasks
self.dispatch_task(body)
if self.pg_is_down:
logger.info('Dispatcher listener connection established')
self.pg_is_down = False
self.listen_start = time.time()
return self.scheduler.time_until_next_run(reftime=reftime)
def run(self, *args, **kwargs):
super(AWXConsumerPG, self).run(*args, **kwargs)
logger.info(f"Running {self.name}, workers min={self.pool.min_workers} max={self.pool.max_workers}, listening to queues {self.queues}")
init = False
while True:
try:
with pg_bus_conn(new_connection=True) as conn:
for queue in self.queues:
conn.listen(queue)
if init is False:
self.worker.on_start()
init = True
# run_periodic_tasks run scheduled actions and gives time until next scheduled action
# this is saved to the conn (PubSub) object in order to modify read timeout in-loop
conn.select_timeout = self.run_periodic_tasks()
# this is the main operational loop for awx-manage run_dispatcher
for e in conn.events(yield_timeouts=True):
self.listen_cumulative_time += time.time() - self.listen_start # for metrics
if e is not None:
self.process_task(json.loads(e.payload))
conn.select_timeout = self.run_periodic_tasks()
if self.should_stop:
return
except psycopg.InterfaceError:
logger.warning("Stale Postgres message bus connection, reconnecting")
continue
except (db.DatabaseError, psycopg.OperationalError):
# If we have attained stady state operation, tolerate short-term database hickups
if not self.pg_is_down:
logger.exception(f"Error consuming new events from postgres, will retry for {self.pg_max_wait} s")
self.pg_down_time = time.time()
self.pg_is_down = True
current_downtime = time.time() - self.pg_down_time
if current_downtime > self.pg_max_wait:
logger.exception(f"Postgres event consumer has not recovered in {current_downtime} s, exiting")
# Sending QUIT to multiprocess queue to signal workers to exit
for worker in self.pool.workers:
try:
worker.quit()
except Exception:
logger.exception(f"Error sending QUIT to worker {worker}")
raise
# Wait for a second before next attempt, but still listen for any shutdown signals
for i in range(10):
if self.should_stop:
return
time.sleep(0.1)
for conn in db.connections.all():
conn.close_if_unusable_or_obsolete()
except Exception:
# Log unanticipated exception in addition to writing to stderr to get timestamps and other metadata
logger.exception('Encountered unhandled error in dispatcher main loop')
# Sending QUIT to multiprocess queue to signal workers to exit
for worker in self.pool.workers:
try:
worker.quit()
except Exception:
logger.exception(f"Error sending QUIT to worker {worker}")
raise
class BaseWorker(object):
def read(self, queue):
return queue.get(block=True, timeout=1)

View File

@@ -15,6 +15,9 @@ import subprocess
import tempfile
from collections import OrderedDict
# Dispatcher
from dispatcherd.factories import get_control_from_settings
# Django
from django.conf import settings
from django.db import models, connection, transaction
@@ -1499,7 +1502,6 @@ class UnifiedJob(
# Special case for task manager (used during workflow job cancellation)
if not connection.get_autocommit():
try:
from dispatcherd.factories import get_control_from_settings
ctl = get_control_from_settings()
ctl.control('cancel', data={'uuid': self.celery_task_id})
@@ -1510,7 +1512,6 @@ class UnifiedJob(
# Standard case with reply
try:
timeout = 5
from dispatcherd.factories import get_control_from_settings
ctl = get_control_from_settings()
results = ctl.control_with_reply('cancel', data={'uuid': self.celery_task_id}, expected_replies=1, timeout=timeout)

View File

@@ -622,40 +622,8 @@ def inspect_execution_and_hop_nodes(instance_list):
execution_node_health_check.apply_async([hostname])
@task(queue=get_task_queuename, bind_kwargs=['dispatch_time', 'worker_tasks'])
def cluster_node_heartbeat(dispatch_time=None, worker_tasks=None):
"""
Original implementation for AWX dispatcher.
Uses worker_tasks from bind_kwargs to track running tasks.
"""
# Run common instance management logic
this_inst, instance_list, lost_instances = _heartbeat_instance_management()
if this_inst is None:
return # Early return case from instance management
# Check versions
_heartbeat_check_versions(this_inst, instance_list)
# Handle lost instances
_heartbeat_handle_lost_instances(lost_instances, this_inst)
# Run local reaper - original implementation using worker_tasks
if worker_tasks is not None:
active_task_ids = []
for task_list in worker_tasks.values():
active_task_ids.extend(task_list)
# Convert dispatch_time to datetime
ref_time = datetime.fromisoformat(dispatch_time) if dispatch_time else now()
reaper.reap(instance=this_inst, excluded_uuids=active_task_ids, ref_time=ref_time)
if max(len(task_list) for task_list in worker_tasks.values()) <= 1:
reaper.reap_waiting(instance=this_inst, excluded_uuids=active_task_ids, ref_time=ref_time)
@task(queue=get_task_queuename, bind=True)
def adispatch_cluster_node_heartbeat(binder):
def cluster_node_heartbeat(binder):
"""
Dispatcherd implementation.
Uses Control API to get running tasks.

View File

@@ -5,7 +5,7 @@ import pytest
from awx.main.models import Job, WorkflowJob, Instance
from awx.main.dispatch import reaper
from awx.main.dispatch.publish import task
from dispatcherd.publish import task
'''
Prevent logger.<warn, debug, error> calls from triggering database operations

View File

@@ -454,7 +454,7 @@ for options in CELERYBEAT_SCHEDULE.values():
task_name = options['task']
# Handle the only one exception case of the heartbeat which has a new implementation
if task_name == 'awx.main.tasks.system.cluster_node_heartbeat':
task_name = 'awx.main.tasks.system.adispatch_cluster_node_heartbeat'
task_name = 'awx.main.tasks.system.cluster_node_heartbeat'
new_options['task'] = task_name
new_options['schedule'] = options['schedule'].total_seconds()
DISPATCHER_SCHEDULE[task_name] = new_options