mirror of
https://github.com/openshift/openshift-docs.git
synced 2026-02-05 12:46:18 +01:00
253 lines
13 KiB
Plaintext
253 lines
13 KiB
Plaintext
// Module included in the following assemblies:
|
||
//
|
||
// * architecture/architecture-installation.adoc
|
||
|
||
[id="installation-overview_{context}"]
|
||
= {product-title} installation overview
|
||
|
||
The {product-title} installation program offers you flexibility. You can use the installation program to deploy a cluster on infrastructure that the installation program provisions and the cluster maintains or deploy a cluster on infrastructure that you prepare and maintain.
|
||
|
||
These two basic types of {product-title} clusters are frequently called
|
||
installer-provisioned infrastructure clusters and user-provisioned
|
||
infrastructure clusters.
|
||
|
||
Both types of clusters have the following characteristics:
|
||
|
||
* Highly available infrastructure with no single points of failure is available
|
||
by default
|
||
* Administrators maintain control over what updates are applied and when
|
||
|
||
You use the same installation program to deploy both types of clusters. The main assets generated by the installation program are the Ignition config files for the bootstrap, master, and worker machines. With these three configurations and correctly configured infrastructure, you can start an {product-title} cluster.
|
||
|
||
The {product-title} installation program uses a set of targets and dependencies to manage cluster installation. The installation program has a set of targets that it must achieve, and each target has a set of dependencies. Because each target is only concerned with its own dependencies, the installation program can act to achieve multiple targets in parallel. The ultimate target is a running cluster. By meeting dependencies instead of running commands, the installation program is able to recognize and use existing components instead of running the commands to create them again.
|
||
|
||
The following diagram shows a subset of the installation targets and dependencies:
|
||
|
||
.{product-title} installation targets and dependencies
|
||
image::targets-and-dependencies.png[{product-title} installation targets and dependencies]
|
||
|
||
After installation, each cluster machine uses {op-system-first} as the operating system. {op-system} is the immutable container host version of {op-system-base-full} and features a {op-system-base} kernel with SELinux enabled by default. It includes the `kubelet`, which is the Kubernetes node agent, and the CRI-O container runtime, which is optimized for Kubernetes.
|
||
|
||
Every control plane machine in an {product-title} {product-version} cluster must
|
||
use {op-system}, which includes a critical first-boot provisioning tool called
|
||
Ignition. This tool enables the cluster to configure the machines.
|
||
Operating system updates are delivered as an Atomic OSTree repository that is
|
||
embedded in a container image that is rolled out across the cluster by an
|
||
Operator. Actual operating system changes are made in-place on each machine as
|
||
an atomic operation by using rpm-ostree. Together, these technologies enable
|
||
{product-title} to manage the operating system like it manages any other
|
||
application on the cluster, via in-place upgrades that keep the entire platform
|
||
up-to-date. These in-place updates can reduce the burden on operations teams.
|
||
|
||
If you use {op-system} as the operating system for all cluster machines, the
|
||
cluster manages all aspects of its components and machines, including the
|
||
operating system. Because of this, only the installation program and the
|
||
Machine Config Operator can change machines. The installation program uses
|
||
Ignition config files to set the exact state of each machine, and the Machine
|
||
Config Operator completes more changes to the machines, such as the application
|
||
of new certificates or keys, after installation.
|
||
|
||
[id="available-platforms_{context}"]
|
||
== Available platforms
|
||
|
||
In {product-title} {product-version}, you can install a cluster that uses
|
||
installer-provisioned infrastructure on the following platforms:
|
||
|
||
* Amazon Web Services (AWS)
|
||
* Google Cloud Platform (GCP)
|
||
* Microsoft Azure
|
||
* {rh-openstack-first} version 13 and 16
|
||
** The latest {product-title} release supports both the latest {rh-openstack} long-life release and intermediate release. For complete {rh-openstack} release compatibility, see the link:https://access.redhat.com/articles/4679401[{product-title} on {rh-openstack} support matrix].
|
||
* {rh-virtualization-first}
|
||
|
||
For these clusters, all machines, including the computer that you run the installation process on, must have direct internet access to pull images for platform containers and provide telemetry data to Red Hat.
|
||
|
||
In {product-title} {product-version}, you can install a cluster that uses
|
||
user-provisioned infrastructure on the following platforms:
|
||
|
||
* AWS
|
||
* Azure
|
||
* GCP
|
||
* {rh-openstack}
|
||
* VMware vSphere
|
||
* Bare metal
|
||
|
||
With installations on user-provisioned infrastructure, each machine can have full internet access, you can place your cluster behind a proxy, or you can perform a _restricted network installation_. In a restricted network installation, you can download the images that are required to install a cluster, place them in a mirror registry, and use that data to install your cluster. While you require internet access to pull images for platform containers, with a restricted network installation on vSphere or bare metal infrastructure, your cluster machines do not require direct internet access.
|
||
|
||
The link:https://access.redhat.com/articles/4128421[OpenShift Container Platform 4.x Tested Integrations]
|
||
page contains details about integration testing for different platforms.
|
||
|
||
[id="installation-process_{context}"]
|
||
== Installation process
|
||
|
||
When you install an {product-title} cluster, you download the
|
||
installation program from
|
||
ifndef::openshift-origin[]
|
||
the appropriate
|
||
link:https://cloud.redhat.com/openshift/install[Infrastructure Provider]
|
||
page on the {cloud-redhat-com} site. This site manages:
|
||
|
||
* REST API for accounts
|
||
* Registry tokens, which are the pull secrets that you use to obtain the required
|
||
components
|
||
* Cluster registration, which associates the cluster identity to your Red Hat
|
||
account to facilitate the gathering of usage metrics
|
||
endif::[]
|
||
ifdef::openshift-origin[]
|
||
https://github.com/openshift/okd/releases
|
||
endif::[]
|
||
|
||
In {product-title} {product-version}, the installation program is a Go binary file that performs a
|
||
series of file transformations on a set of assets. The way you interact with the
|
||
installation program differs depending on your installation type.
|
||
|
||
* For clusters with installer-provisioned infrastructure, you delegate the
|
||
infrastructure bootstrapping and provisioning to the installation program
|
||
instead of doing it yourself. The installation program creates all of the
|
||
networking, machines, and operating systems that are required to support the
|
||
cluster.
|
||
|
||
* If you provision and manage the infrastructure for your cluster, you must
|
||
provide all of the cluster infrastructure and resources, including the
|
||
bootstrap machine, networking, load balancing, storage, and individual cluster
|
||
machines. You cannot use the advanced machine management and scaling capabilities
|
||
that an installer-provisioned infrastructure cluster offers.
|
||
|
||
You use three sets of files during installation: an installation configuration
|
||
file that is named `install-config.yaml`, Kubernetes manifests, and Ignition
|
||
config files for your machine types.
|
||
|
||
[IMPORTANT]
|
||
====
|
||
It is possible to modify Kubernetes and the Ignition config files that control
|
||
the underlying {op-system} operating system during installation. However,
|
||
no validation is available to confirm the suitability of any modifications that
|
||
you make to these objects. If you modify these objects, you might render
|
||
your cluster non-functional. Because of this risk, modifying Kubernetes and
|
||
Ignition config files is not supported unless you are following documented procedures
|
||
or are instructed to do so by Red Hat support.
|
||
====
|
||
|
||
The installation configuration file is transformed into Kubernetes manifests, and
|
||
then the manifests are wrapped into Ignition config files. The installation program uses
|
||
these Ignition config files to create the cluster.
|
||
|
||
The installation configuration files are all pruned when you run the installation program,
|
||
so be sure to back up all configuration files that you want to use again.
|
||
|
||
[IMPORTANT]
|
||
====
|
||
You cannot modify the parameters that you set during installation, but you can
|
||
modify many cluster attributes after installation.
|
||
====
|
||
|
||
[discrete]
|
||
=== The installation process with installer-provisioned infrastructure
|
||
|
||
The default installation type uses installer-provisioned infrastructure. By default, the installation
|
||
program acts as an installation wizard, prompting you
|
||
for values that it cannot determine on its own and providing reasonable default
|
||
values for the remaining parameters. You can also customize the installation
|
||
process to support advanced infrastructure scenarios. The installation program provisions
|
||
the underlying infrastructure for the cluster.
|
||
|
||
You can install either a standard cluster or a customized cluster. With a
|
||
standard cluster, you provide minimum details that are required to install the
|
||
cluster. With a customized cluster, you can specify more details about the
|
||
platform, such as the number of machines that the control plane uses, the type
|
||
of virtual machine that the cluster deploys, or the CIDR range for the
|
||
Kubernetes service network.
|
||
|
||
If possible, use this feature to avoid
|
||
having to provision and maintain the cluster infrastructure. In all other
|
||
environments, you use the installation program to generate the assets that you require to
|
||
provision your cluster infrastructure.
|
||
|
||
With installer-provisioned infrastructure clusters, {product-title} manages all aspects of
|
||
the cluster, including the operating system itself. Each machine boots with a
|
||
configuration that references resources hosted in the cluster that it joins.
|
||
This configuration allows the cluster to manage itself as updates are applied.
|
||
|
||
[discrete]
|
||
=== The installation process with user-provisioned infrastructure
|
||
|
||
You can also install {product-title} on infrastructure that you provide. You use the
|
||
installation program to generate the assets that you require to provision the
|
||
cluster infrastructure, create the cluster infrastructure, and then deploy
|
||
the cluster to the infrastructure that you provided.
|
||
|
||
If you do not use infrastructure that the installation program provisioned, you must manage
|
||
and maintain the cluster resources yourself, including:
|
||
|
||
* The control plane and compute machines that make up the cluster
|
||
* Load balancers
|
||
* Cluster networking, including the DNS records and required subnets
|
||
* Storage for the cluster infrastructure and applications
|
||
|
||
If your cluster uses user-provisioned infrastructure, you have the option of
|
||
adding RHEL worker machines to your cluster.
|
||
|
||
[discrete]
|
||
=== Installation process details
|
||
|
||
Because each machine in the cluster requires information about the cluster when
|
||
it is provisioned, {product-title} uses a temporary _bootstrap_ machine during
|
||
initial configuration to provide the required information to the permanent
|
||
control plane. It boots by using an Ignition config file that describes how to
|
||
create the cluster. The bootstrap machine creates the master machines that
|
||
make up the control plane. The control plane machines then create the compute machines, which are also known as worker machines. The following figure illustrates this process:
|
||
|
||
.Creating the bootstrap, master, and worker machines
|
||
image::create-nodes.png[Creating bootstrap, master, and worker machines]
|
||
|
||
After the cluster machines initialize, the bootstrap machine is destroyed.
|
||
All clusters use the bootstrap process to initialize the
|
||
cluster, but if you provision the infrastructure for your cluster, you must
|
||
complete many of the steps manually.
|
||
|
||
[IMPORTANT]
|
||
====
|
||
The Ignition config files that the installation program generates contain
|
||
certificates that expire after 24 hours. You must complete your cluster
|
||
installation and keep the cluster running for 24 hours in a non-degraded state
|
||
to ensure that the first certificate rotation has finished.
|
||
====
|
||
|
||
Bootstrapping a cluster involves the following steps:
|
||
|
||
. The bootstrap machine boots and starts hosting the remote resources required
|
||
for the master machines to boot. (Requires manual intervention if you provision
|
||
the infrastructure)
|
||
. The master machines fetch the remote resources from the bootstrap machine
|
||
and finish booting. (Requires manual intervention if you provision the
|
||
infrastructure)
|
||
. The master machines use the bootstrap machine to form an etcd cluster.
|
||
. The bootstrap machine starts a temporary Kubernetes control plane using the
|
||
new etcd cluster.
|
||
. The temporary control plane schedules the production control plane to the
|
||
master machines.
|
||
. The temporary control plane shuts down and passes control to the production
|
||
control plane.
|
||
. The bootstrap machine injects {product-title} components into the production
|
||
control plane.
|
||
. The installation program shuts down the bootstrap machine.
|
||
(Requires manual intervention if you provision the infrastructure)
|
||
. The control plane sets up the worker nodes.
|
||
. The control plane installs additional services in the form of a set
|
||
of Operators.
|
||
|
||
The result of this bootstrapping process is a fully running {product-title}
|
||
cluster. The cluster then downloads and configures remaining components
|
||
needed for the day-to-day operation, including the creation of worker machines
|
||
in supported environments.
|
||
|
||
[discrete]
|
||
=== Installation process details
|
||
|
||
[discrete]
|
||
== Installation scope
|
||
|
||
The scope of the {product-title} installation program is intentionally narrow.
|
||
It is designed for simplicity and ensured success. You can complete many
|
||
more configuration tasks after installation completes.
|