1
0
mirror of https://github.com/getsops/sops.git synced 2026-02-05 12:45:21 +01:00
Files
sops/shamir/shamir.go
Felix Fontein 72cebfd8a1 Run 'gofmt -w' on all .go files.
Signed-off-by: Felix Fontein <felix@fontein.de>
2025-03-28 20:11:33 +01:00

310 lines
10 KiB
Go

package shamir
// Some comments in this file were written by @autrilla
// The code was written by HashiCorp as part of Vault.
// This implementation of Shamir's Secret Sharing matches the definition
// of the scheme. Other tools used, such as GF(2^8) arithmetic, Lagrange
// interpolation and Horner's method also match their definitions and should
// therefore be correct.
// More information about Shamir's Secret Sharing and Lagrange interpolation
// can be found in README.md
import (
"crypto/rand"
"fmt"
)
const (
// ShareOverhead is the byte size overhead of each share
// when using Split on a secret. This is caused by appending
// a one byte tag to the share.
ShareOverhead = 1
)
// polynomial represents a polynomial of arbitrary degree
type polynomial struct {
coefficients []uint8
}
// makePolynomial constructs a random polynomial of the given
// degree but with the provided intercept value.
func makePolynomial(intercept, degree uint8) (polynomial, error) {
// Create a wrapper
p := polynomial{
coefficients: make([]byte, degree+1),
}
// Ensure the intercept is set
p.coefficients[0] = intercept
// Assign random co-efficients to the polynomial
if _, err := rand.Read(p.coefficients[1:]); err != nil {
return p, err
}
return p, nil
}
// evaluate returns the value of the polynomial for the given x
// Uses Horner's method <https://en.wikipedia.org/wiki/Horner%27s_method> to
// evaluate the polynomial at point x
func (p *polynomial) evaluate(x uint8) uint8 {
// Special case the origin
if x == 0 {
return p.coefficients[0]
}
// Compute the polynomial value using Horner's method.
degree := len(p.coefficients) - 1
out := p.coefficients[degree]
for i := degree - 1; i >= 0; i-- {
coeff := p.coefficients[i]
out = add(mult(out, x), coeff)
}
return out
}
// interpolatePolynomial takes N sample points and returns
// the value at a given x using a lagrange interpolation.
// An implementation of Lagrange interpolation
// <https://en.wikipedia.org/wiki/Lagrange_polynomial>
// For this particular implementation, x is always 0
func interpolatePolynomial(xSamples, ySamples []uint8, x uint8) uint8 {
limit := len(xSamples)
var result, basis uint8
for i := 0; i < limit; i++ {
basis = 1
for j := 0; j < limit; j++ {
if i == j {
continue
}
num := add(x, xSamples[j])
denom := add(xSamples[i], xSamples[j])
term := div(num, denom)
basis = mult(basis, term)
}
group := mult(ySamples[i], basis)
result = add(result, group)
}
return result
}
// div divides two numbers in GF(2^8)
// GF(2^8) division using log/exp tables
func div(a, b uint8) uint8 {
if b == 0 {
// leaks some timing information but we don't care anyways as this
// should never happen, hence the panic
panic("divide by zero")
}
// a divided by b is the same as a multiplied by the inverse of b:
return mult(a, inverse(b))
}
// inverse calculates the inverse of a number in GF(2^8)
// Note that a must be non-zero; otherwise 0 is returned
func inverse(a uint8) uint8 {
// This makes use of Fermat's Little Theorem for finite groups:
// If G is a finite group with n elements, and a any element of G,
// then a raised to the power of n equals the neutral element of G.
// (See https://en.wikipedia.org/wiki/Fermat%27s_little_theorem;
// the generalization to finite groups follows from Lagrange's theorem:
// https://en.wikipedia.org/wiki/Lagrange%27s_theorem_(group_theory))
//
// Here we use the multiplicative group of GF(2^8), which has
// n = 2^8 - 1 elements (every element but zero). Thus raising a to
// the (n - 1)th = 254th power gives a number x so that a*x = 1.
//
// If a happens to be 0, which is not part of the multiplicative group,
// then a raised to the power of 254 is still 0.
// (See also https://github.com/openbao/openbao/commit/a209a052024b70bc563d9674cde21a20b5106570)
// In the comments, we use ^ to denote raising to the power:
b := mult(a, a) // b is now a^2
c := mult(a, b) // c is now a^3
b = mult(c, c) // b is now a^6
b = mult(b, b) // b is now a^12
c = mult(b, c) // c is now a^15
b = mult(b, b) // b is now a^24
b = mult(b, b) // b is now a^48
b = mult(b, c) // b is now a^63
b = mult(b, b) // b is now a^126
b = mult(a, b) // b is now a^127
return mult(b, b) // result is a^254
}
// mult multiplies two numbers in GF(2^8)
// GF(2^8) multiplication using log/exp tables
func mult(a, b uint8) (out uint8) {
// This computes a * b in GF(2^8), which is defined as GF(2)[X] / <X^8 + X^4 + X^3 + X + 1>.
// This finite field is known as Rijndael's finite field. (Rijndael is the algorithm that
// was standardized as AES.)
// (See https://en.wikipedia.org/wiki/Finite_field_arithmetic#Rijndael's_(AES)_finite_field)
//
// We identify elements in GF(2^8) with polynomials of degree < 8. The i-th bit of a field
// element is the coefficient of X^i in that polynomial.
//
// To multiply a and b in this finite field, we use something similar to Russian peasant
// multiplication. We iterate over b's bits, starting from the highest to the lowest.
// i denotes the bit we're currently processing (7, 6, 5, 4, 3, 2, 1, 0).
// The accumulator is set to 0; every iteration, we multiply the accumulator
// by X modulo X^8+X^4+X^3+X+1, and then add a to the accumulator in case b's i-th bit is 1.
var accumulator uint8 = 0
var i uint8 = 8
for i > 0 {
i--
// Get the i-th bit of b; bitOfB is either 0 or 1.
bitOfB := b >> i & 1
// aOrZero is 0 if the i-th bit of b is 0, and a if the i-th bit of b is 1. This is
// what we later add to the accumulator.
aOrZero := -bitOfB & a
// zeroOr1B is 0 if the 7th bit of the accumulator is 0, and 0x1B = 11011_2 if the
// 7th bit of accumulator is 1
zeroOr1B := -(accumulator >> 7) & 0x1B
// accumulatorMultipliedByX equals accumulator multiplied by X modulo X^8+X^4+X^3+X+1
// In the expression, accumulator + accumulator equals accumulator << 1, which would be
// the accumulator multiplied by X modulo X^8.
// By XORing (addition and subtraction in GF(2^8)) with zeroOr1B, we turn this into
// accumulator multiplied by X modulo X^8 + X^4 + X^3 + X + 1.
accumulatorMultipliedByX := zeroOr1B ^ (accumulator + accumulator)
// We can now compute the next value of the accumulator as the sum (in GF(2^8)) of aOrZero
// and accumulatorMultipliedByX.
accumulator = aOrZero ^ accumulatorMultipliedByX
}
return accumulator
}
// add combines two numbers in GF(2^8)
// This can also be used for subtraction since it is symmetric.
func add(a, b uint8) uint8 {
// Addition in GF(2^8) equals XOR:
return a ^ b
}
// Split takes an arbitrarily long secret and generates a `parts`
// number of shares, `threshold` of which are required to reconstruct
// the secret. The parts and threshold must be at least 2, and less
// than 256. The returned shares are each one byte longer than the secret
// as they attach a tag used to reconstruct the secret.
func Split(secret []byte, parts, threshold int) ([][]byte, error) {
// Sanity check the input
if parts < threshold {
return nil, fmt.Errorf("parts cannot be less than threshold")
}
if parts > 255 {
return nil, fmt.Errorf("parts cannot exceed 255")
}
if threshold < 2 {
return nil, fmt.Errorf("threshold must be at least 2")
}
if threshold > 255 {
return nil, fmt.Errorf("threshold cannot exceed 255")
}
if len(secret) == 0 {
return nil, fmt.Errorf("cannot split an empty secret")
}
// Allocate the output array, initialize the final byte
// of the output with the offset. The representation of each
// output is {y1, y2, .., yN, x}.
out := make([][]byte, parts)
for idx := range out {
// Store the x coordinate for each part as its last byte
// Add 1 to the xCoordinate because if the x coordinate is 0,
// then the result of evaluating the polynomial at that point
// will be our secret
out[idx] = make([]byte, len(secret)+1)
out[idx][len(secret)] = uint8(idx) + 1
}
// Construct a random polynomial for each byte of the secret.
// Because we are using a field of size 256, we can only represent
// a single byte as the intercept of the polynomial, so we must
// use a new polynomial for each byte.
for idx, val := range secret {
// Create a random polynomial for each point.
// This polynomial crosses the y axis at `val`.
p, err := makePolynomial(val, uint8(threshold-1))
if err != nil {
return nil, fmt.Errorf("failed to generate polynomial: %w", err)
}
// Generate a `parts` number of (x,y) pairs
// We cheat by encoding the x value once as the final index,
// so that it only needs to be stored once.
for i := 0; i < parts; i++ {
// Add 1 to the xCoordinate because if it's 0,
// then the result of p.evaluate(x) will be our secret
x := uint8(i) + 1
// Evaluate the polynomial at x
y := p.evaluate(x)
out[i][idx] = y
}
}
// Return the encoded secrets
return out, nil
}
// Combine is used to reverse a Split and reconstruct a secret
// once a `threshold` number of parts are available.
func Combine(parts [][]byte) ([]byte, error) {
// Verify enough parts provided
if len(parts) < 2 {
return nil, fmt.Errorf("less than two parts cannot be used to reconstruct the secret")
}
// Verify the parts are all the same length
firstPartLen := len(parts[0])
if firstPartLen < 2 {
return nil, fmt.Errorf("parts must be at least two bytes")
}
for i := 1; i < len(parts); i++ {
if len(parts[i]) != firstPartLen {
return nil, fmt.Errorf("all parts must be the same length")
}
}
// Create a buffer to store the reconstructed secret
secret := make([]byte, firstPartLen-1)
// Buffer to store the samples
xSamples := make([]uint8, len(parts))
ySamples := make([]uint8, len(parts))
// Set the x value for each sample and ensure no x_sample values are the same,
// otherwise div() can be unhappy
// Check that we don't have any duplicate parts, that is, two or
// more parts with the same x coordinate.
checkMap := map[byte]bool{}
for i, part := range parts {
samp := part[firstPartLen-1]
if exists := checkMap[samp]; exists {
return nil, fmt.Errorf("duplicate part detected")
}
checkMap[samp] = true
xSamples[i] = samp
}
// Reconstruct each byte
for idx := range secret {
// Set the y value for each sample
for i, part := range parts {
ySamples[i] = part[idx]
}
// Use Lagrange interpolation to retrieve the free term
// of the original polynomial
val := interpolatePolynomial(xSamples, ySamples, 0)
// Evaluate the 0th value to get the intercept
secret[idx] = val
}
return secret, nil
}