diff --git a/CLAUDE.md b/CLAUDE.md index de3f2277..c217be14 100644 --- a/CLAUDE.md +++ b/CLAUDE.md @@ -4,7 +4,7 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co ## Project Overview -RamaLama is a CLI tool for managing and serving AI models using containers. It provides a container-centric approach to AI model management, supporting multiple model registries (HuggingFace, Ollama, OCI registries) and automatic GPU detection with appropriate container image selection. +RamaLama is a CLI tool for managing and serving AI models using containers. It provides a container-centric approach to AI model management, supporting multiple model registries (Hugging Face, Ollama, OCI registries) and automatic GPU detection with appropriate container image selection. ## Build and Development Commands @@ -31,7 +31,7 @@ make bats-nocontainer # Run in nocontainer mode make bats-docker # Run with Docker # All tests -make tests # Run unit + end-to-end tests +make tests # Run unit tests and system-level integration tests ``` ### Running a single test @@ -48,7 +48,7 @@ RAMALAMA=$(pwd)/bin/ramalama bats -T test/system/030-run.bats ### Code Quality ```bash -make validate # Run all validation (codespell, lint, format check, type check) +make validate # Run all validation (codespell, lint, format check, man-check, type check) make lint # Run flake8 + shellcheck make check-format # Check black + isort formatting make format # Auto-format with black + isort @@ -88,7 +88,7 @@ Manages local model storage: - `schema.py` - Inference spec schema handling ### Key Patterns -- **GPU Detection**: `get_accel()` in `common.py` detects GPU type (cuda, rocm, vulkan, etc.) and selects appropriate container image +- **GPU Detection**: `get_accel()` in `common.py` detects GPU type (CUDA, ROCm, Vulkan, etc.) and selects appropriate container image - **Container Images**: GPU-specific images at `quay.io/ramalama/{ramalama,cuda,rocm,intel-gpu,...}` - **Inference Engines**: llama.cpp (default), vllm, mlx (macOS only) - configured via YAML specs in `inference-spec/engines/`